93 research outputs found

    Modeling the spectral shape of absorption by chromophoric dissolved organic matter

    Get PDF
    A single exponential model of the form ag(λ)∝e -seλ was evaluated in the context of its application and interpretation in describing absorption by chromophoric dissolved organic matter (CDOM), ag, as a function of wavelength, λ. The spectral slope, se, is often used as a proxy for CDOM composition, including the ratio of fulvic to humic acids and molecular weight. About three-quarters of the variability in se values from the literature could be explained by the different spectral ranges used in each study. Dependency on different spectral ranges resulted from the relatively weak performance of the single exponential as a descriptor of ag(λ) in comparison to other models that allow for greater spectral curvature. Consequently, actual variability in the spectral shape of absorption, and thus the composition of CDOM, from widely varying water types appears less than currently thought. The usefulness of five other models in describing CDOM absorption spectra in the visible domain was also evaluated. Six data sets collected with an ac9 in-situ spectrophotometer from around the coastal United States were used in the analysis. All models considered performed better than the conventional single exponential model, with the exception of a double exponential model, where the second exponential term contributed little new information in the fit. Statistically, the most useful model (judged by an analysis of variance) in the visible range was a hyperbolic model of the form: a g(λ)∝λ-sh. Although the hyperbolic model was less dependent on the spectral range used in the fit, some dependency remained. The most representative model for describing ag(λ) from the six regions considered in this study, with ag at 412 nm as input, was: ag(λ)=ag(412)(λ/412) -6.92. This spectral relationship may be suitable for remote sensing semi-analytical models which must compute a spectrum from a single estimate of CDOM absorption in the blue derived from a remotely sensed water-leaving radiance signal

    Microscale Quantification of the Absorption by Dissolved and Particulate Material in Coastal Waters with an ac-9

    Get PDF
    Measuring coastal and oceanic absorption coefficients of dissolved and particulate matter in the visible domain usually requires a methodology for amplifying the natural signal because conventional spectrophotometers lack the necessary sensitivity. The WET Labs ac-9 is a recently developed in situ absorption and attenuation meter with a precision better than ±0.001 m−1 in the raw signal, which is sufficient to make these measurements in pristine samples. Whereas the superior sensitivity of the ac-9 has been well documented, the accuracy of in situ measurements for bio-optical applications has not been rigorously evaluated. Obtaining accurate results with an ac-9 requires careful attention to calibration procedures because baselines drift as a result of the changing optical properties of several ac-9 components. To correct in situ measurements for instrument drift, a pressurized flow procedure was developed for calibrating an ac-9 with optically clean water. In situ, micro- (cm) to fine- (m) scale vertical profiles of spectral total absorption, at(λ), and spectral absorption of dissolved materials, ag(λ), were then measured concurrently using multiple meters, corrected for drift, temperature, salinity, and scattering errors and subsequently compared. Particulate absorption, ap(λ), was obtained from at(λ) − ag(λ). CTD microstructure was simultaneously recorded. Vertical profiles of ag(λ), at(λ), and ap(λ) were replicated with different meters within ±0.005 m−1, and spectral relationships compared well with laboratory measurements and hydrographic structure

    Assessing uncertainties in scattering correction algorithms for reflective tube absorption measurements made with a WET Labs ac-9

    Get PDF
    In situ absorption measurements collected with a WET Labs ac-9 employing a reflective tube approach were scatter corrected using several possible methods and compared to reference measurements made by a PSICAM to assess performance. Overall, two correction methods performed best for the stations sampled: one using an empirical relationship between the ac-9 and PSICAM to derive the scattering error (ε) in the nearinfrared (NIR), and one where ε was independently derived from concurrent measurements of the volume scattering function (VSF). Application of the VSF-based method may be more universally applicable, although difficult to routinely apply because of the lack of commercially available VSF instrumentation. The performance of the empirical approach is encouraging as it relies only on the ac meter measurement and may be readily applied to historical data, although there are inevitably some inherent assumptions about particle composition that hinder universal applicability. For even the best performing methods, residual errors of 20% or more were commonly observed for many water types. For clear ocean waters, a conventional baseline subtraction with the assumption of negligible near-IR absorption performed as well or better than the above methods because propagated uncertainties were lower than observed with the proportional method

    Evaluation of a flow cytometry method to determine size and real refractive index distributions in natural marine particle populations

    Get PDF
    A flow cytometric (FC) method was developed to retrieve particle size distributions (PSDs) and real refractive index (nr) information in natural waters. Geometry and signal response of the sensors within the flow cytometer (CytoSense, CytoBuoy b.v., Netherlands) were characterized to form a scattering inversion model based on Mie theory. The procedure produced a mesh of diameter and nrisolines where each particle is assigned the diameter and nrvalues of the closest node, producing PSDs and particle real refractive index distributions. The method was validated using polystyrene bead standards of known diameter and polydisperse suspensions of oil with known nr, and subsequently applied to natural samples collected across a broad range of UK shelf seas. FC PSDs were compared with independent PSDs produced from data of two LISST-100X instruments (type B and type C). PSD slopes and features were found to be consistent between the FC and the two LISST-100X instruments, but LISST concentrations were found in disagreement with FC concentrations and with each other. FC nrvalues were found to agree with expected refractive index values of typical marine particle components across all samples considered. The determination of particle size and refractive index distributions enabled by the FC method has potential to facilitate identification of the contribution of individual subpopulations to the bulk inherent optical properties and biogeochemical properties of the particle population

    Measurement uncertainties in PSICAM and reflective tube absorption meters

    Get PDF
    The nature and magnitude of measurement uncertainties (precision and accuracy) associated with two approaches for measuring absorption by turbid waters are investigated here: (a) point source integrating cavity absorption meters (PSICAM), and (b) reflective tube absorption meters (AC-9 and AC-s – both WET Labs Inc., USA). Absolute measurement precision at 440 nm was quantified using standard deviations of triplicate measurements for the PSICAM and de-trended, bin averaged time series for the AC-9/s, giving comparable levels (< 0.006 m-1) for both instruments. Using data collected from a wide range of UK coastal waters, PSICAM accuracy was assessed by comparing both total non-water absorption and absorption by coloured dissolved organic material (CDOM) measured on discrete samples by two independent PSICAMs. AC-9/s performance was tested by comparing total non-water absorption measured in situ by an AC-9 and an AC-s mounted on the same frame. Results showed that the PSICAM outperforms AC-9/s instruments with regards to accuracy, with average spread in the PSICAM total absorption data of 0.006 m-1 (RMSE) compared to 0.028 m-1 for the AC-9/s devices. Despite application of a state of the art scattering correction method, the AC-9/s instruments still tend to overestimate absorption compared to PSICAM data by on average 0.014 m-1 RMSE (AC-s) and 0.043 m-1 RMSE (AC-9). This remaining discrepancy can be largely attributed to residual limitations in the correction of AC-9/s data for scattering effects and limitations in the quality of AC-9/s calibration measurements

    Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes

    Get PDF
    In 1996 three cruises were conducted to simultaneously quantify the fine-scale optical and physical structure of the water column. Data from 120 profiles were used to investigate the temporal occurrence and spatial distribution of thin layers of phytoplankton as they relate to variations in physical processes. Thin layers ranged in thickness from a few centimeters to a few meters. They may extend horizontally for kilometers and persist for days. Thin layers are a recurring feature in the marine environment; they were observed and measured in 54% of our profiles. Physical processes are important in the temporal and spatial distribution of thin layers. Thin layer depth was closely associated with depth and strength of the pycnocline. Over 71% of all thin layers were located at the base of, or within, the pycnocline. The strong statistical relationships between thin layers and physical structure indicate that we cannot understand thin layer dynamics without understanding both local circulation patterns and regional physical forcing

    Platform effects on optical variability and prediction of underwater visibility

    Get PDF
    We present hydrographic and optical data collected concurrently from two different platforms, the R/P FLoating Instrument Platform and the R/V Kilo Moana, located about 2km apart in the Santa Barbara Channel in California. We show that optical variability between the two platforms was due primarily to platform effects, specifically the breakdown of stratification from mixing by the hull of R/P FLIP. Modeled underwater radiance distribution differed by as much as 50% between the two platforms during stratified conditions. We determine that the observed optical variability resulted in up to 57% differences in predicted horizontal visibility of a black target

    An Overview of Approaches and Challenges for Retrieving Marine Inherent Optical Properties from Ocean Color Remote Sensing

    Get PDF
    Ocean color measured from satellites provides daily global, synoptic views of spectral water-leaving reflectances that can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents. Because of their dependence on the concentration and composition of marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This information is critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbon production and export, phytoplankton dynamics, and responses to climatic disturbances. Given their importance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products into the community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., the global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval of these core optical properties. Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separated based their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated with each approach are provided, as well as common performance metrics used to evaluate them. We discuss current knowledge gaps and make recommendations for future investment for upcoming missions whose instrument characteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches
    corecore